If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.9x^2+5x-3=0
a = 3.9; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·3.9·(-3)
Δ = 71.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{71.8}}{2*3.9}=\frac{-5-\sqrt{71.8}}{7.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{71.8}}{2*3.9}=\frac{-5+\sqrt{71.8}}{7.8} $
| 9x+4√3x-180=0 | | 3(x+1)-9=2x+5 | | 2(x+5)=6x+6-4x+4 | | (x+7)^2=16 | | 5x+6/3x+6=7/5 | | 3x÷2+2=5/3 | | 2−3m=m | | 3xX-4=4xX+2 | | 2a/5-4=1 | | X+(x+375,000)=575,000,000 | | a=4-4*7+3 | | X+x+14=348 | | 3x/4=x²/8 | | 213+m+13=115 | | (X+3)3=23+x | | 3^(x-5)=12^(4x) | | 5+z=3•4•8 | | 3x+29=59 | | (x^2-9)(X-2)=0 | | 11=3m÷4+m | | 11=3m/4+m | | 4x-23=3 | | 28+9n=3n | | 14^6x=5^x+6 | | 14^6^x=5^x+6 | | 4x+(5x-2)=0 | | 5=4x+24/3 | | -3w=-9/8 | | -35=7/4y | | -5x/6=-20 | | -10/7=-2v | | 5/3d=15 |